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A variety of phenomena (such as the spread of diseases, pollution in rivers, etc.) can be studied as diffusion

processes over networks (i.e., the diffusion of the phenomenon over a set of interconnected entities). This

research introduces a method to study such diffusion processes in multiplex dynamic networks. We use a

formal Modeling and Simulation methodology (in our case, DEVS, Discrete-Event System Specification). We

use DEVS formal models to integrate models defined using Agent-Based Modeling and Network Theory. We

present (1) an Architecture to study Diffusion Processes in Multiplex dynamic networks (ADPM) and (2) a

systematic Process to define, implement, and simulate diffusion processes over such networks. We show a

theoretical definition and a concrete implementation of ADPM. We show how to use ADPM and the process

in a case study based on a real nuclear emergency plan; this illustrates the application of the process, the ar-

chitecture, and the developed software. Different scenarios are studied as Diffusion Processes to demonstrate

the usability of ADPM.
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1 INTRODUCTION

Understanding phenomena such as the spread of diseases, the adoption of technological innova-
tions, or the diffusion of news (fake and real) is important for policymakers [1, 2]. They need a
comprehensive understanding of these phenomena to make sound policies and contingency plans.
For example, with diseases, it is important to know how the process works and what the effects
of different policies are. They may want to know if it is necessary to vaccinate the population
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or only specific groups, or they could be interested in knowing if infected individuals need to be
quarantined. These phenomena can be seen as diffusion processes, in which the object of interest
(i.e., a virus, an idea, a molecule, etc.) spreads in an environment starting from an area with a high
concentration of the object to areas with lower concentrations.
There are different methods for studying diffusion processes, but most are based on various

kinds of entities that are interconnected (networks). Methods based on simplex networks [3, 4]
use a single type of connection between entities. They assume that all connections have the same
properties, but this could lead to misleading results (e.g., individuals are not likely to transmit a
rumor equally to their colleagues and to their boss). Multiplex network methods, in which not all
connections are equivalent, are better suited to study diffusion processes [4].
Regardless of how links are represented (simplex ormultiplex), two main approaches have been

used to model the diffusion process over the network: Differential Equations (DEs) and Agent-
Based Modeling (ABM) [5]. Agent models are popular in Social Science to explore phenomena that
can be understood as a diffusion process, such as the emergence of segregation [6, 7], violent groups
[8], adaptation of organizations to change [9], population growth [10], or market dynamics [11].
DEs have been used to study innovation [12], epidemiology [13], and business cycles [14], among
others. The main advantage of nonlinear DEs is that they can include a wide range of feedback
effects (i.e., how the current value of a parameter of the system affects its future value, as in closed-
loop systems). However, when they are used to study diffusion processes, one typically needs to
aggregate nodes into fewer states or categories [5]. Instead, ABM uses different attributes in each
category, and different nodes in the same category may have different behavior. The network
structure is clearly defined, and the behavior of each node is modeled individually at an increased
computational cost [5].
Likewise, neither of these two approaches provides well-established modeling and simulation

(M&S) mechanisms for incorporating diffusion algorithms into multiplex dynamic networks and
run simulations. For example, Xiong et al. studied the effect of the diffusion of innovation into
social networks using simulation [15]. They defined models for the behavior of the nodes, but
they did not include details on integrating the network into a computerized model or the simula-
tion algorithm, nor on implementation. In most cases, the methodology used to build the model,
the simulation platform, or the simulation algorithms are not specified. Models are built ad hoc
and they are mixed with the simulation and the experiments. This lack of separation of concerns
leads to problems; for example, having models mixed with the simulator verification and vali-
dation more complex and expensive. It also makes it harder to implement the same model on a
different platform. Additionally, mixing models and experiments reduces reusability and hinders
replication.
The limitations of DEs and ABM to study diffusion processes pose the following question that

we are interested in investigating: how can we study diffusion processes in multiplex dynamic
networks to overcome the limitations of DEs and ABM? Is there a framework that allows us to do
this? To answer these questions, we introduce a method to study diffusion processes in multiplex
dynamic networks maintaining separations of concerns in all phases of modeling, implementa-
tion, and experimentation. The results include (1) an Architecture to study Diffusion Processes
in Multiplex dynamic networks (ADPM) and (2) a systematic Process to define, implement, and
simulate diffusion processes over such networks. We use Network Theory formal specifications to
define the topology of the diffusion process, ABM to define the behavior of the entities involved,
and a formal specification of both for simulation modeling. This research uses the Discrete Event
System Specification (DEVS) formalism [16] to define the formal simulation model. Definitions of
ABM, DEVS, and Network Theory are found in Section 2.
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A major component of ADPM is a formal Diffusion Abstract Model (DAM), automatically con-
structed from the specifications provided by Network and Agent-Based models. The Network
model does not include all the information needed to simulate the diffusion process. Similarly,
the Agent-Based model is not a formal model. The DAM is a formal model that combines both in
order to model and simulate diffusion processes (i.e., the behavior of the agents representing the
diffusion rules and the connections between the agents representing the diffusion network). The
formal model helps with early validation prior to implementation, as we can analyze the models’
specifications before coding. Likewise, as models, simulator, and experiments are independent,
the same model can be implemented on different platforms, which helps to not only reuse existing
models and experiments but also replicate the results. ADPM also allows us to simulate diffusion
processes with variable topology, the network’s characteristics or behavior, without modifying the
model (we need to change only the simulation inputs). We can easily simulate different scenarios
and network configurations by updating a model experimentation framework without changing
the implementation.
The rest of the article discusses how ADPM and our development process can help to build

diffusion models. Section 2 discusses related work on diffusion processes and the methodologies
we use to define the ADPM architecture. Section 3 presents ADPM and the development process.
Section 4 applies ADPM to build a model of a diffusion process in a multiplex network: a model to
study the communications in an organization, specifically an emergency plan. Section 5 presents
the advantages of the architecture, which are exemplified by the case study. Finally, Section 6 ends
with the conclusions of this research.

2 RELATEDWORK

Many real-world systems can be described as a combination of components and their interactions.
These systems can be modeled as a network where nodes are components and links their relations
[3]. The early methods, called simplex networks, used a single type of connection between the
entities that represented the system [3, 4]. They assumed that all the connections have the same
properties, which could lead tomisleading results.Multiplex networks, inwhich not all connections
are equivalent, are better suited to model diffusion processes. In multiplex networks, links can
represent several types of relations. Links are classified into layers according to their type: all links
representing the same type of relation are organized into a layer. We can use different metrics to
study a network’s properties. In simplex networks, for example, the network density tells if the
network is highly connected; its diameter represents the longest distance between two nodes, the
number of connected components, and so forth [17]. Although somemetrics are used forMultiplex
networks, including centrality [18], this is still an ongoing research topic [4].
Moreover, the generalization of diffusion processes from simplex to multiplex networks is not

trivial (this topic is still being investigated [4, 19]; although some types of diffusion processes, such
as linear diffusion and random walks, have been generalized, this is an open research area [20]).
Such generalization is important becausewe usually need tomodel systemswith different relations
among components. For example, if we want to model a transportation system, we can consider
the cities to be the components that are interconnected through different means of transportation
(highways, railways, air, etc.). The characteristics of these means need to be modeled accordingly.
Additionally, the relations among components may change over time. When relations are perma-
nent, the system can be modeled as a static network. However, many systems are dynamic (i.e.,
relations among components change over time). Modeling them using static networks does not
capture all a system’s properties, which can lead to wrong results. Dynamic multiplex networks
can better capture their dynamics. As discussed in the Introduction, DEs and ABM have been used
to model diffusion processes [5]. There are well-defined diffusion algorithms that employ DEs for

ACM Transactions on Modeling and Computer Simulation, Vol. 31, No. 1, Article 6. Publication date: December 2020.



6:4 C. Ruiz-Martin et al.

studying diffusion processes in networks, such as the Susceptible-Infected-Recovered (SIR) model
[21]. Similarly, in medicine, Wang et al. proposed an algorithm to study the diffusion of preventive
measures to protect the population against disease [22]. Granell et al. worked on the same topic
using Microscopic Markov Chains [23], where individuals (network nodes) in an epidemic only
employed three states, and diffusion rules were simple (they did not consider dynamic networks).
Other research works also focused on adapting algorithms and models of diseases to study other
problems. For example, Khelil et al. applied an epidemiological diffusion model to study diffusion
processes in mobile ad hoc networks [24]. Others centered on social networks using diffusionmod-
els for contagious processes, such as opinion adoption, social movements, or behaviormodification
[25, 26].
ABM has also been used to study diffusion processes in multiplex networks. ABM can be defined

as a “computational method that enables to create, analyze and experiment with models composed
of agents that interact within an environment” [27]. An agent is a “computer system situated in
some environment that is capable of flexible autonomous action in order to meet its design ob-
jectives” [28]. One of the advantages of ABM is establishing correspondence between entities and
their interactions in the real system, and the agents and their interactions in models [29]. There is
no mathematical representation of agents, and we simulate the models [30], which has its pros and
cons: it is easy to observe the system’s emergent behavior, but it is easy to introduce errors when
translating the model into a computer. Jiang and Jiang matched elements of diffusion processes
in social networks to ABM [31]. They found that there are actors that interact in both cases (stat-
ically or dynamically). Agents follow a diffusion protocol and they make decisions based on the
exchanged elements. They proposed using ABM in diffusion problems for social networks as an
alternative method to the theoretical perspective (to obtain empirical results) and to complement
theoretical and empirical research. Xiong et al. studied the effect of the diffusion of innovation in
social networks using simulation [15]. They defined models for the behavior of nodes but did not
include details on integrating the network into a computerized model, the simulation algorithm,
or the implementation platform.
DE models are computationally more efficient than ABM and can include a wide range of feed-

back effects. When we build a network to study a diffusion process using DE, we normally reduce
the model’s granularity to manage complexity [5]. These DE models are usually nonlinear and
every category we add is a new variable in the model that we need to relate to the others. Instead,
ABM can model the behavior of each agent (i.e., node) independently, but at a higher compu-
tational cost. Additionally, increasing the level of detail increases the cognitive effort needed to
understand the model’s behavior, which makes sensitivity analyses more complex [5].
Although the previous research in the field shows how to study diffusion processes in multiplex

dynamic networks, there are no well-established M&S mechanisms in this area. In most cases, the
employed methodology or simulation platforms are not well defined, and applications are built ad
hoc. As simulators, models and experiments are defined as a mix of software components with no
clear separation of concerns, and it is hard to think about the problem, and testing and validation
become complex and expensive. This also hinders reusability. As discussed in the Introduction, we
want to provide mechanisms to build the simulation systematically by clearly defining the models,
their implementation, a platform for experimentation, and an analysis of the simulation results.
To do so, we combine DEVS, ABM, and Network Theory.
DEVS is a formal discrete-event M&S methodology [16] that derives from Systems Theory and

allows defining hierarchical modular models. A DEVS model is a mathematical entity specified as
a black box with a state and an associated duration. Models made of only one component are called
atomic models. DEVS models can be connected by linking the outputs of one model to the inputs
of other models to form coupled models. There are different DEVS simulators, such as JAMES
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[32], JDEVS [33], DEVSJava [34], or Cadmium [35]. We used Cadmium, a cross-platform simulator
implemented in C++11 that facilitates the analysis of the simulation results.
In [36, 37], DEVS, ABM, and Network Theory were used to simulate information diffusion pro-

cesses in multiplex networks. A server-proxy architecture was employed, where servers represent
the behavior of the nodes, and the proxies define the diffusion rules for each layer. Servers and
proxies were modeled in DEVS, and coupled models represent network nodes. Dynamic DEVS
was used to store all the network configurations needed for simulation. This approach was fol-
lowed to study information diffusion in social networks [38], although different issues can be
identified. Sometimes, the rules representing agents’ behavior are difficult to handle and do not
follow homogenous patterns, which makes storing the retrieval of rules more complex. In [36, 37],
the authors do not consider agents where the behavior parameters contain a different number of
elements or agents with distinct behavioral parameters. Moreover, the server-proxy architecture
does not allow all the needed properties to be represented. For example, individuals in an orga-
nization could use different devices (and their networks). If we were interested in studying what
would happen when devices or networks fail, we would need to model both. The server-proxy
architecture only allows us to include one: either devices or networks. Finally, Dynamic DEVS
forces the storage of all the network configurations that we wish to simulate, which is complex
to model. Storing all configurations is not feasible. A directional network with three nodes and
one layer has eight network configurations. If we increase the number of nodes to 20, we obtain
1,048,576 configurations, a number that increases exponentially with the number of nodes. Using
Dynamic DEVS also limits the DEVS simulation tools that can be employed as their availability
becomes more limited.
We present an original approach that is general and can be used for any type of diffusion process

in multiplex dynamic networks, including a development process and generic implementation.
We define a DAM that can be defined with other M&S methodologies. The design is flexible, and
it allows diffusion processes to be modeled without storing all the network configurations. We
use the inputs in the model to change the network configuration during the simulation time. To
be able to store complex behaviors, we define the agent’s behavior using an XML format that is
more flexible than a table format database. Additionally, with the DAM we can include all the
properties we need for the model. If we want to simulate the communications in an organization,
we can include the properties of both communication devices and communication networks. Other
advantages include the possibility of updating the model’s properties at runtime and reducing
software dependencies.

3 ADPM

The Architecture (and development process) to simulate Diffusion Processes in Multiplex dynamic
networks is presented in Figure 1. The architecture is generic and can be used to study several types
of diffusion processes (which we discuss later).
ADPM includes the Requirements andAssumptions Document of the problem; a Networkmodel

of the relations among components; an Agent-Based model of behavior; the DAM, a formal rep-
resentation based on the Network and Agent models; a Diffusion Computerized Model (DCM) of
the DAM; the Simulation Logs; and a Results Analysis Report. The DAM is defined using a formal
specification, DEVS in our case. This solves some of the limitations of Network Theory, such as
lack of a formally verified simulator to simulate a diffusion process over the network. By including
ABM, we can also define the behavior of both the nodes and links in the network. The formal DAM
confers ABM rigor while separating modeling, verification, and experimentation.
The main advantage of combining Network Theory, ABM, and DEVS is that we can use the most

appropriate method to model the various aspects of the problem. Network Theory is well suited to
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Fig. 1. ADPM organization and workflow.

model the relations between components; ABM is better suited to model behavior. DEVS provides
a formal specification to define the whole model as components with hierarchical and modular
specifications, which can be executed using the well-established abstract simulation algorithms,
which are proven to execute models correctly. This combination allows us to separate concerns
and clearly differentiates each part of the problem, as well as separating models from simulation
engines and experiments that are independent software entities.
ADPM is combined with a development process, whose different steps are identified with num-

bers in Figure 1. We now explain the process and the different steps needed.
Step 1 – Diffusion Experiment Data Collection: domain experts, with the help of technical

staff, collect all the specifications and details of the system of interest, including a list of assump-
tions. The output of this step is a Requirements and Assumptions Documentwith all the information
that describes the system. It is used in the next step to provide modelers with a detailed description
of the system of interest and to define the scenarios that we need to simulate.
Step 2 – Requirement Analysis, Assumptions, Modeling Network, and Agent Models

andModel Cross-Verification: these twomodels are defined in parallel by themodeler (Modeling
in the figure). Modeling experts review and analyze the Requirements and Assumptions Document
together with the Domain Experts. This communication is important because requirements can
be ambiguous. This step may need several iterations.
Although we can use different perspectives to build these models, we follow [31] and combine

the ABM and Network models to build the DAM. There is a relation between the components in
both the Network Model and ABM. We use this relation for Model Cross-Verification. Although
Model Cross-Verification is done manually in this research stage, this process can be automated.
The idea is for each node in the Network Model to be represented by an agent in ABM. Therefore,
ABM will have as many agents as nodes in the Network. The links in the Network Model define the
possible interactions between agents in ABM, and the different types of links in the Networkmatch
the objects the agents use to interact. Each agent in ABM uses an attribute called “MyLinksTypes”
that stores all the types of links that the node handles. Each agent also employs an attribute called
“MyRelations” that stores all the possible output connections of the node with the link type (this
is detailed in Section 3.3).
Any new assumptions made while defining the Network and ABMmodels must be approved by

the domain experts and must be included in the original document. Modelers must include the
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new assumptions in the document, and the domain experts must analyze and approve or reject
them. This step can result in revisiting step 1. These models must be validated. In systems where
operational validation is not possible, they should be validated by domain experts.
Step 3 –Modeling the DAM and DAMVerification:modelers are provided with the Require-

ments and Assumptions Document and the Network and Agent-Basedmodels. If there is a mismatch
or missing data or further assumptions are needed, they revisit step 2. Modelers decide which
generic DAM components should be included (see Section 3.4) and how to instantiate them. There-
fore, the generic DAM can be considered a metamodel that is instantiated for specific applications
using the information in the Network and Agent-Based Models (as detailed in Section 3.4). In our
case, we used DEVS to formally define the DAM.
Step 4 – Implementation of the DCM and Verification: this step consists in converting the

formal DAM into an executable model: the DCM. In our case, we used DEVS and the Cadmium
toolkit, but the architecture and development process can be followed, and other formalisms or
tools can be used. Developers must verify the simulation that derives from the model in step 3;
if problems arise, steps 3 and 4 must be revisited. The DCM can be customized to simulate the
different scenarios proposed in the Requirements and Assumptions Document.
Step 5 – Simulation Execution, Results Analysis, and Operational Validation: using the

DCM and the simulation scenarios defined in the Requirements and Assumptions Document,we ex-
ecute different simulations. We analyze simulation logs to obtain meaningful information, which
is summarized in the Result Analysis Report. This report is given to the domain experts for valida-
tion (expert validation) and decision making. New iterations may be needed before the results are
valid.
In the rest of the section, we discuss all these components in detail.

3.1 Requirements and Assumptions Document

This component includes all the requirements, specifications, assumptions, and data available for
the problem under study. Although every case is different, a minimum set of requirements would
include the following:

• The elements to be diffused (i.e., rumors, viruses; more than one type can be included)
• Individuals diffusing the above-mentioned elements: e.g., if we are studying the diffusion
of a virus, it could be transmitted by both animals and persons

• Individuals’ behavior: behavior rules depend on different variables, such as intrinsic char-
acteristics, the relation types they have, or the diffusion element type

• Starting diffusion elements (diffusion can also start in distinct locations over time)
• Effects of diffusion elements and which are relevant
• Mechanisms to spread diffusion elements, including characteristics and connections
• The diffusion mechanisms that can be used by everyone
• The variables we are interested in studying: e.g., we may be interested in the number of in-
dividuals infected by the virus, how it is transmitted, or specific infected population groups

• Scenarios to be analyzed: we may study what happens when individuals are vaccinated, the
results of a prevention campaign, among others; scenarios should include all their charac-
teristics and parameters (i.e., effectiveness of the vaccine or the number of individuals to
vaccinate)

These requirements can be collected manually (e.g., through interviews) or automatically (e.g.,
with different sensors). If information is incomplete, experts should provide additional information
or a set of valid assumptions.
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Table 1. Nodes Ids and Labels (Partial)

Id Label
1 Node name 1
2 Node name 2
3 Node name 3
4 Node name 4

Table 2. Network Connections (Partial)

Source Target Label
16 323 Layer 1
16 324 Layer 1
325 368 Layer 2
325 369 Layer 3
1 2 Layer 2

Fig. 2. Example of the agent’s definition using XML.

3.2 Network Model

The Network model is an organized representation of the Diffusion experiment data collected
in the Requirements and Assumptions Documents. It formalizes the relations among the system
components using Network Theory. The resulting network can be implemented, analyzed, and
visualized by different tools (Gephi [39], Pajek [40], MuxViz [41], etc.) and stored in various formats
(network graph—i.e., a graphical representation of the network, XML, tables, etc.).
In our case, we organized the information into two tables so they could be easily translated

into other formats (CSV, XML) and then imported to software tools to analyze and visualize the
network. One table stores the nodes of the network. Each node has a unique id and a label (Table 1).
The second stores the connections between nodes (Table 2). Each row represents a connection
defined by the Source node id, the Target node id, and a label representing the type of link. As we
can see, the behavior of nodes and the characteristics of links are missing in the network model.

3.3 Agent-Based Model

The Agent-Based model is a representation of the behavior of those in charge of the diffusion
process, the objects they use for diffusing the element, and the properties of the relations among
these objects. It is formalized using ABM and can be implemented by different methods: DEVS,
XML, specific software platforms like NetLogo or Repast [42]. Figure 2 illustrates an XML imple-
mentation of a generic agent with a minimum set of attributes (represented as XML tags) that
must be included to capture all the information needed to study the diffusion process, that is, the
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Fig. 3. The DAM structure [43].

connections from the Network Model and the behavior defined for each node and each link in the
Requirements and Assumptions Document.
The behavior of the agent is defined between tags <AgentBehavior>. We have the following

attributes at least (which match the network model as discussed in the following):

• <Id> of the agent: it has the same Id as the node whose behavior we are defining (i.e., one
of the Ids in Table 1).

• <MyLinksTypes>: it represents the types of input and output Links that the agent uses. We
filter all the rows in Table 2 where the agent Id is present (as a source/target). We then
employ this attribute and store all the link types from the filtered table (i.e., the column
label in Table 2). If there are two rows with the same label, we simply add it once.

• <MyRelations>: it represents the outputs of the agent (i.e., node). It is an attribute with two
elements: (1) an Id to represent which agent we can contact and (2) as many Links as layers
we can use to contact the agent. We filter all the rows in Table 2 where the id is a source.
We add one <MyRelations> per Id in the filtered table. The value in the target column is
stored in the <Id> attribute. We create one <Link> attribute per label.

• <BehaviorRules>: it represents the behavior rules of the agent. This information is not avail-
able in the Network Model. Each element inside <BehaviorRules> represents a <Rule> for
the agent during the diffusion process. The parameters of this attribute must be extracted
from the Requirements and Assumptions Document.

<MyLinksTypes> and <MyRelations> capture the multiplex part of the network in the agent.
The attribute names can be modified to make the behavior readable in each context; for ex-
ample, in an information diffusion process, <MyLinksTypes> could instead be <Devices> or
<CommunicationMechanism>.

3.4 Diffusion Abstract Model (DAM)

The DAM is an abstract and formal representation of the Diffusion experiment data from the Re-
quirements and Assumptions Document that matches the elements in the Network and the Agent-
BasedModel. It is formalized using a formal specification (DEVS in our case, but other specifications
like System Dynamics or State Charts could be used). It is also possible to utilize different methods
for the different components if there is a way to connect them (i.e., a metamodel). The DAM is a
generic container that follows the structure shown in Figure 3.
Appendix A shows the formal DAM definition using DEVS [43]. To build the DAM, we need a

model library for the components (a DEVS library in our case) or an expert in the formalism used
(an expert in DEVS in our case). For the rest of the section, we detail all the components and how
they are obtained with the information in the ABM and Network models.
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Fig. 4. The Node element structure.

3.4.1 Node Element. The Node element (Figure 4) provides a structure for defining the agents
from the XML Agent model (from this point onward the XML Agent refers to the definition in
Figure 2). Each Node element corresponds to a node in the Network Model (Table 1) and the cor-
responding XML Agent in the ABM. The DAM will have as many Node elements as nodes in the
Network model (and XML Agent in ABM). The Node element is a generic container that follows
the structure presented in Figure 4. It uses several submodels: input Filters and Switches (Direct
and Indirect Link connections), Behavior Rules, and Behavior models (for Sending/Receiving). The
punctuated lines represent all the connections related to the behavior of the agents using indirect
links. The dashed lines represent all the connections related to the behavior of the agents using
direct links. The straight lines are used by default. This notation is maintained throughout the
present work.
Behavior Rules implement the diffusion rules and network connections defined earlier in the

ABM (tags <BehaviourRules> and <MyRelations>). This is a parameterized model in a model li-
brary (otherwise, it must be developed for the specific application). It will be instantiated for each
node using the information in the XML Agent. If all the same parameters are employed, we have a
single model. If different XML Agents behave differently, we may have distinct models and we will
choose one or the other based on the behavior parameters.
As we broadcast messages in themodel, we need theDirect Link, Generator, andNode Updater fil-

ters to check if the received messages are for this Node. These models do not have a representation
on the Network and ABM models, and deal with broadcasted messages.
Direct Links Switch also classifies incoming messages. It has the same number of Indirect Link

Switches as the Node’s number of diffusion elements. It is instantiated based on <MyLinksTypes>.
Receiving and Sending Filters is used to classify the instructions in those with incoming or out-

going instructions.
Receiving Behavior using Direct Link represents the assimilation of diffusion elements. It defines

the behavior of the XML Agent when the diffusion element is received via a Direct Link. This
model can be available in a library or must be developed for the specific application. We may have
different models if the nodes have different behaviors. Similarly, Sending Behavior using Direct
Link is used to spread the diffusion element. Receiving Behavior using Indirect Links represents the
assimilation of the diffusion element by Indirect Links. Likewise, Sending Behavior using Indirect
Links represents the process to spread the diffusion element.
Appendix A shows the formal definition of some of these coupled models, while the formal

definition of atomic components, such as Generator Filter, can be found in Appendix B.
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Fig. 5. Indirect Link coupled model.

Fig. 6. Link Connectors coupled model.

By defining themodels formally as in Appendix A, we can perform early validation by analyzing
the model definition, which saves time in early phases of the project. For example, in Generator
Filter, the variable mdb accumulates the number of messages passing through the filter. By ana-
lyzing the formal model, we can verify if the model is defined according to the specifications. For
example, we can check ifmdb is cleared after sending the messages. We can also check if the model
passivates every timemdb is empty. Likewise, in the DAM coupled model, we could check if the
connections between components are well defined. No software implementation is required for
such checks.

3.4.2 Indirect Link. It is presented in Figure 5 and provides a generic structure for communi-
cation. It represents the types of links that the XML Agent can access (i.e., the input and output
links in the Network Model) identified by <MyLinksTypes>. They define the objects that the agent
uses for the diffusion process. There are as many Indirect Link elements as there are Node models.
It is instantiated using the type of indirect links. When implementing the model, we can define a
DEVS coupled model automatically.
Link Type i represents how we transmit the diffusion element. For instance, in a transportation

system, Link Type 1 could be an Airport, Link Type 2 a bus station, and so forth. For spreading news
in Social Networks, Link Type 1 could be Facebook, Link Type 2 Twitter, and so forth.
Filters redirect the diffusion elements (news, individuals, etc.) and the Link Sink collects all

messages without a matching Link Type. The behavior of the Link Types should be in a model
library or developed by an expert (in our case, a DEVS expert). The Sink can be reused for different
applications.

3.4.3 Link Connectors. Figure 6 shows how the objects used by the XML Agents to diffuse the
diffusion elements are connected. For example, in a transportation system, Link Connector 1 may
represent roads, 2 railways, and so forth. For Social Networks, we could have a single Link Connec-
tor, such as the Internet (in which case Filters are not used). As in the previous case, Filters redirect
the diffusion elements or the updates in the properties of each Link Connector to the appropriate
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model. The models for the behavior of the different Link Connectors should be in a model library
or developed by an expert (a DEVS expert in our case).

3.4.4 Direct Link. It represents a direct connection between nodes, that is, the properties of the
links in the Network model with a direct connection between nodes. In the Agent-Based model, it
represents the connections handled without using any additional objects (it would not be used in
a transportation system as cities are always connected by roads/rails/flights; in Social Networks, it
could represent the direct connection between individuals in the same location, who can talk face
to face). This model should be adapted from a library or developed by an expert (a DEVS expert in
our case).

3.4.5 Diffusion Element Generator. It is an atomic model that generates the elements to be dif-
fused over time. It defines the initial location of the diffusion elements in the Network and Agent-
Based models and the new ones introduced over time. Different scenarios can be simulated by
simply updating a file (changing the implementation is not necessary). In a transportation sys-
tem it would, for instance, generate passengers and their destination; in a Social Networks study,
it would generate rumors. This is an artifact to start the simulation and introduce new diffusion
elements while the simulation is running.

3.4.6 Updaters. They modify the properties of the model at runtime by generating updates for
the models that they are connected to (simulating different scenarios without changing the imple-
mentation). They do not correspond to the Network or ABM models. In a transportation system,
the updaters might generate road closures or train stations may close. In a Social Network like
Facebook, they might generate configuration changes (e.g., public sharing instead of friends only).
The Node Updater generates updates in the properties of the nodes based on external information.
In a transportation system, it could generate new links between cities (i.e., a new flight), change
a train timetable, and so forth. In a Social Network, it could generate updates in face-to-face con-
nections or generate new behaviors for individuals based on external parameters.

3.5 Diffusion Computerized Model (DCM)

The DCM is an implementation of the DAM. We utilize the formal definition of Section 3.4 and
Cadmium (Appendix C shows an example of theGenerator Filter defined in Appendix B). Although
we employ the Cadmium tool, other DEVS Simulators can be used. Having implemented all the
components of the DAM, we build a DAM top model using the Network and Agent-Based models
in Figure 2. This automation allows us to study different network configurations with the same
implementation. Appendix D shows a general implementation of the DAM.

3.6 Simulation Logs and Results Analysis Report

TheDCMprovides Simulation Logs for the different scenarioswe execute. These logs are processed
using different statistical and data visualization tools (e.g., R [44], PowerBI [45], etc.) to generate
reports used for both validation and decision making (Step 5). We need to conduct expert vali-
dations and other kinds of operational validation, including animation, comparison to equivalent
models, historic data validation, and so forth [46]. Based on the results in this step, we can define
modifications in the system specifications and define new scenarios, modify the Requirements and
Assumptions Document, and restart the process.
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Fig. 7. Sketch of the organizational structure of the NEP.

4 COMMUNICATIONS IN A NUCLEAR EMERGENCY PLAN

To show how to use ADPM, we present a case study of a diffusion problem in a multiplex net-
work: the communications used in a Nuclear Emergency Plan (NEP). The section is organized and
described based on the ADPM components and process explained in Section 3.

4.1 Requirements and Assumptions Document

We used actual information obtained from the emergency plans for a Spanish Nuclear Power Plant
(NPP). The plan, defined by the Spanish Civil Protection Agency, states in detail the actions needed
in the event of an accident (NB: detailed information about the NPP and the plan cannot be revealed
as this information is confidential; we only discuss important aspects for this research that can be
shared with the general public). The NEP is a detailed management plan that defines the struc-
ture and functions of a Virtual Organization composed of different public organizations (police,
town halls, etc.) and coordinated to solve the emergency. It also defines the tasks to be performed
by every suborganization and how they are related. Data collection was done together with NEP
experts. We analyzed the documentation, acquired the needed data, and conducted follow-up in-
terviews by the procedures discussed in Section 3. The Requirements and Assumptions Document
contains a comprehensive definition of the NEP [47]. We discuss the most relevant aspects of this
document containing 96 pages to show how to define the Network, Agent and Abstract Diffusion
models.
Figure 7 shows the organizational structure of the NEP. At the core is the NEP Director, who

makes decisions to manage and solve the emergency. As the emergency evolves, higher National
Government ranks (such as the President) can replace the Director. Different systems are used
for communications, including landline/cell phones, fax, mixed radio/phone networks, satellite,
Internet, Remer and Reman radio channels, and in situ communication. The Health Group can also
employ beepers. Emergency managers and first responders can also use military communications,
which are not available until the NEP Director makes a request and the infrastructure is deployed
(we do not consider this in our model; this is a backup plan should everything else fail and is
beyond the scope of our study). Communications must follow the NEP hierarchy and the internal
structure of each group. The most frequently used communication system is the phone: landline
or mobile.
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Table 3. Summary of the Commands to Be Managed in the Event of an Emergency

Level 0

Notify and verify the incident at the NPP

Start Emergency Level 0

Request data about the state of the emergency

Level 1

Evaluate the available data to determine the emergency category

Start Emergency Level 1 and activate every group in the NEP

Track communications in the NEP

Track the evolution of the emergency at the NPP

Ask first responders to show their accreditation and classify them into working groups

Ask substitute teams to start working on the emergency. Tell those ones working to rest

Level 2

Start Emergency Level 2

Integrate the extraordinary resources needed in the emergency

Verify the safety and security in the emergency area (e.g., protect against looting)

Radiological Prophylaxis (tell individuals to take medication to protect themselves against radiation)

Level 3

Classify individuals based on their exposure to radiation and decontaminate them

Evaluate the state of the infrastructure and any other resources and decontaminate them

Classify animals based on their exposure to radiation and decontaminate them

The NEP defines every command to be made during an emergency (more than 30). The Director
selects what to do based on the evolution of the emergency. Table 3 shows various commands
classified according to the level of the emergency (0 to 3). At each level of the emergency plan, all
the commands available at lower levels can be used.
As we show in Section 4.3, we used these rules to define the attributes of the agents’ behavior.

Presenting the rules as a table facilitates this transition. This information is not needed to develop
the Network model. The messages transmitted in the Network and Agent models (i.e., diffusion
elements) are the commands shown in Table 3 and their acknowledgments.

4.2 Network Model Definition

To build the network model, we utilized the information from the Requirements and Assumptions
Document: the individuals involved in the NEP and the systems they can use to communicate with
one another. The messages transmitted inside the network (i.e., diffusion elements) are the com-
mands and acknowledgments found in the document. In the network model, nodes represent the
individuals involved in the NEP, and the links denote the relations between individuals. Each type
of link represents a communication system. There are 832 nodes and 12 types of links (fax, Internet,
landline phone, mobile, satellite, Reman radio channel, Remer radio channel, Civil Guard radio-
phone, Radiological Group radio-phone, Autonomous Police radio-phone, in situ communications,
Beepers).
We analyzed the network properties using Gephi [48]. Figure 8 shows one of the multiple rep-

resentations of the network at the beginning of the emergency. We can see the groups defined
in the Requirements and Assumptions Document. We employed a simplex network (Gephi does
not support multiplex networks) and we identified that there was no resilience [49] in the com-
munications in the Health and Logistical Support groups. We found that some relations between
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Fig. 8. NEP network at the start of the emergency [48].

individuals were managed only by a single communication system. Nonresilient communications
imply that individuals are isolated from the group if the communication system fails. They cannot
receive commands to deal with the emergency, which makes things worse. Although this analysis
does not allow the behavior of individuals to be included, we used this model to study how failure
in different communication systems affects network connectivity before analyzing the system’s
dynamics.

4.3 Agent-Based Model

We defined the behavior of the individuals (i.e., the rules they follow when receiving and trans-
mitting information) using ABM. We considered the relevant characteristics of the behavior of
individuals. We then used the organizational structure, the communication systems, and the com-
munication rules defined in the Requirements and Assumptions Document to complete the model.
We employed XML to describe the behavior of agents as in Figure 2:

• Id: identifies the agent (e.g., NEP Director, Radiological Group Chair, or others).
• Location: represents the location of the agent.When the emergency starts, their predefined
actions determine their initial location.

• Reaction Time: indicates how long it takes to react to a stimulus.
• Answer Priority Type: identifies the priority of the agent to receive a command. It can be
based on who sends the command or the device receiving the message or could be random.

• Send Priority Type: identifies how the agent chooses the commands they send. Their
priority can be based on a priority list or on arrival time or could be random.

• My Devices: identifies the devices for each agent in the Requirements Document. For each
device, we define the relative priority of the device for the agent (parameter), its type (at-
tribute), if it can broadcast/multicast (attribute), and if it is half/full-duplex (attribute).

• Prioritized Task: indicates how the agent sorts the tasks to be performed during an emer-
gency.

• Answer Device Priority: agent’s priority to respond to commands based on the devices.
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Fig. 9. Scheme of the DAM definition for the NEP.

• Answer Person Priority: agent’s priority to receive commands based on who sends them.
• Send Command Priority: each command on the list includes priority, destination, and
content. In some cases, it is in the Requirements and Assumptions Document (e.g., the Direc-
tor “Establishes emergency level 0”); in others, it is not specified.

• Action Execution Priority: indicates how the agent prioritizes the actions.
• CommunicationRelations: it is a list of the connections of the agent. Each connection has
two attributes: target and device. It is translated directly from theNetworkmodel. In Table 2,
we select the rows with Source equaling the Id in the ABM. Each row is a Communication
Relationwhere the target attribute is the same as in the table, and device is the label attribute
in the table.

• Message Behavior: defines the messages that the agent must send based on the received
messages (defined in the Requirements Document). For each command or acknowledgment,
there is a list of messages to be sent and a list of actions. Each message includes (1) desti-
nation, (2) content (e.g., “Tell individuals to stay home”), (3) a mandatory/optional tag, (4) a
broadcast/multicast tag, (5) a mandatory device to use, and (6) if acknowledgment is needed.

• Action Behavior: defines the set of actions of the agent (Requirements Document). Each
action includes (1) average execution time, (2) location, and (3) messages to send (with the
same attributes inMessage Behavior). This is an acknowledgment of action being completed.

4.4 Diffusion Abstract Model for the Nuclear Emergency Plan (NEP)

Once the Agent-Based model is completed, we define the DAM introduced in Section 3, and we
apply it to the NEP. This process is summarized in Figure 9.
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We use the NEP Network and the NEP Agent-Based models (top of the figure) to decide which
DAM components are needed for the case study. We also choose the formal methodology to define
the DAM. We then need to instantiate the generic DAM defined by ADPM (bottom right of the
figure) for the specific application (bottom left of the figure). This is the NEP in our case. We will
discuss how to convert the generic components into the proper instantiations.
The mapping between the components in the generic DAM and the names in the specific appli-

cation is not automated. Node in the DAM corresponds to Person in the NEP (this information is
obtained from theAgent andNetworkmodels). Indirect Links are converted intoDevices (represent-
ing the devices that each person can use, obtained from the Agent model and from the labels in the
Networkmodel). Links Connectors are converted intoNEPNetworks (i.e., the Internet, the telephone
network). In this case, such information is also defined as an object in the Agent-Based model. Di-
rect Link is converted into a Face-to-Face Connector that represents in situ communications.
Nodes Updater is converted into People in Location models. For each location, this model calcu-

lates the list of persons present by taking the current location of each Person as input.
Indirect Links Updater is transformed into Device States, which define if a device is broken. We

do the same for Link Connector Updater—Network State. Finally,Diffusion Element Generator is con-
verted into Command Generator, which generates commands according to the Requirements Doc-
ument. This triggers the diffusion process. We do not use Direct Link Updater as we do not want to
modify the attributes of the Face-to-Face Connector at runtime (i.e., we could change environmental
noise in situ, distance, etc., but such scenarios are beyond the scope of this study).
The next step is to formalize each component using the general DEVS specifications in Sec-

tion 4. The DEVS parameterized atomic models are different for different applications; they must
be available in a model library or be defined by a DEVS expert using the parameters in the ABM
and Network Models. Once the atomic components are defined, the instantiation process of the
NEP DAM is automated (using the Agent model and the parameters for devices and networks). As
in our case there are hundreds of components, we automated this process by taking agents’ XML
files as inputs and generating a DEVS Computer Model (see Section 5.5).
In the rest of the section, we explain how to instantiate these DEVS coupled and atomic models.
Person-coupled model instantiation: we use the Node structure presented in Section 4.2. Our

agents employ both direct (i.e., face-to-face) and indirect (i.e., devices) communications (Figure 10).
Behavior Rules is a coupled model that includes the actions that the agent performs to solve the

emergency. It is instantiated for each Person model using the agent information in the XML file.
It models how the person reacts to messages and how they execute tasks (based on the behavior
defined in the XML, the active devices, the individuals around, and a to-do list).
Devices coupled model instantiation: we follow the Indirect Link structure in Section 4.3. We use

the MyDevices attribute of the XML file and devices models employing the agent Id. The Devices
coupled model includes filters, a sink, and as many devices as elements in MyDevice (Section 4.3).
Networks coupled model instantiation: we use the Link Connectors structure in Section 4.4. The

model employs as many Link Connectors as networks in the Agent model. Each Link Connector is
instantiated by a network parameterized model.
Other models: the other components in the NEP DAM (Face-to-face Connector, Network State,

Device State, Individuals in Same Location, and Command Generator) are defined as atomic models.
Their instantiation is like the atomic components of the previous examples.

4.5 Nuclear Emergency Plan (NEP) Diffusion Computer Model (DCM)

As we explained in Section 3, the NEP DCM is a Computer Model of the DAM.We built it using the
Cadmium simulator introduced in Section 2. The model is based on the NEP DAM (i.e., the atomic

ACM Transactions on Modeling and Computer Simulation, Vol. 31, No. 1, Article 6. Publication date: December 2020.



6:18 C. Ruiz-Martin et al.

Fig. 10. Coupled model definition of a Node and its translation into a Person model for the NEP.

and coupled models we defined) and the agent XML, which are used to translate the NEP DAM
into a Computer Model for Cadmium. Figure 11 shows a diagram of this process.
To implement the coupled models, we first instantiate the atomic models using functions that

query the XML file and/or the parameters for the devices defined in the Agent model. The function
uses the rules to generate all the required code. The top-level model is built by taking the XML
files where agents are defined, reading them and transforming them into a structure to generate
the parameters of all the previously explained functions. The output is a file with thousands of
lines of code for Cadmium, including all the instantiated atomic and coupled models, which, once
compiled, generates the NEP DCM ready to generate results. This process is automated.
This automation process is independent of the DEVS simulator that we use if the simulator

allows the implementation of the parameterized DEVS atomic models that can be instantiated
when the coupled model is defined.

4.6 Simulation Results

In this section, we show how to use our Architecture for Diffusion Processes in Multiplex dynamic
networks and the model defined above. We employ two different case studies: the NEP leader-
ship and the Health group to exemplify how we can respond to different questions suggested by
decision makers.
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Fig. 11. Scheme of the NEP DCM implementation.

Fig. 12. Commands issued by the Director.

4.6.1 Analysis of Nuclear Emergency Plan (NEP) Leadership. This case study presents the ba-
sic functionality of ADPM and shows some simple simulation results by focusing on employing
ADPM. Leadership consists of 13 individuals and their respective communication devices.
The scenario we discuss is as follows: the NEP Director issues four commands at four separate

times (with various levels of severity; see Figure 12). In addition, the communication device used
by person 13 in the Radiological Group (a Leadership member) fails at time 00:15:00:000 (i.e., 15
minutes after the emergency started).
The simulation output log shows the tasks performed by each agent, including the communica-

tion mechanisms used. We transformed the log file in a summary report (Results Analysis Report
in Fig. 1) using PowerBI [45], a tool for big data analyses.
We use this scenario to illustrate how to answer the following questions:

• What are the most widely used devices? To do so, we study the usage of the various com-
munications devices.

• Are the message transmission rules properly defined in the NEP? To do this, we count the
individuals who receive the messages when both networks and devices work as expected,
and we compare themwith the individuals who are assumed to receive messages (according
to the NEP specifications).

• Who are the busiest individuals?We identify howmany tasks are performed by each person
and how many messages they receive.

a) What are the most widely used devices?
From the simulation log, we check the device that each person uses for each communication,

and we count the number of times that each one was used. Table 4 summarizes in this scenario
that the fax is used 36 times, followed by face-to-face communications and the Radiological Group
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Table 4. Simulation Results: Use of Devices

Communication Device #Uses
FAX 36
IN_PERSON 12
RADIOLOGICAL_GROUP_DEVICE (RGD) 10

Fig. 13. Number of tasks per person, classified by sent and answered tasks.

Device (RGD). The emergency plan specifies that some individuals can use email, cell phones, and
so forth. However, it is hard to predict which will be the most employed as both users’ preferences
and the availability of the devices will affect the result. Thanks to the simulation model, we can
observe the emergent behavior of using devices, which may differ from the desired one.
By identifying the most widely used devices, we can find the networks that are most critical in

the event of disruptions. Knowing the most widely used devices allows us to simulate scenarios in
which they fail and to decide if they are critical or if there are other ways to transmit commands.
The results in this specific scenario suggest that we need to focus on RGD and Fax communications.
b) Are the message transmission rules properly defined in the NEP?
To analyze if the message transmission rules are properly defined in the NEP, we study the num-

ber of individuals who receive each command. If all the devices and networks work as expected,
knowing how many individuals receive the command allows us to identify if the message trans-
mission rules are well defined. To do this study, we need to identify how many individuals were
expected to receive the command, and how many received it in our simulation scenario. In this
specific case, 12 individuals received each command. As the Leadership includes 13 individuals and
the Director is the person who generates all the commands, we can see that everyone received all
the commands. Moreover, the failure of the device used by person 13 did not affect transmission.
We can conclude that the rules to transmit commands are well defined.
c) Who are the busiest individuals?
The simulation results also allow us to identify the number of tasks performed by each person

and to therefore identify the individuals with more workload. Figure 13 shows the tasks by each
person classified as two types: ANSWER (i.e., responding to incoming communications from an-
other person) and SEND (i.e., transmitting a command). In our case, Person 1 (the NEP Director) is
the most active and only sends commands. The others (except person 13) only receive commands.
This shows that it can be a promising idea to include a new person at the head of the NEP to help
the Director to transmit commands to other individuals.

4.6.2 Analysis of the Health Group inside the NEP. We extended the NEP leadership to include
the Health Group to show that we can simulate different scenarios by merely updating the Agents
XML to automatically generate a new DCM. We instantiated the NEP DAM with Leadership and
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Fig. 14. Individuals who receive command “Establish Level 0, 1, 2, and 3” in the Health Group.

the Health group (107 individuals and their devices).We can see that both the number and behavior
of agents differ from the NEP leadership, as well as the connections in the network model.
In this case study, we focus on finding out which communications mechanisms are critical. To

answer this question, we analyze the individuals receiving commands based on different failure
rates for devices.
a) Is the mobile phone a critical communication mechanism in the Health Group?
We studied what happens when the Director issues different emergency levels. Mobile phones

fail with different probabilities. The simulation was repeated until a 95% confidence interval was
obtained. Figure 14 shows the number of individuals who receive commands “Establish Emergency
Level 0, 1, 2, and 3” when mobile phones fail with different probabilities (i.e., failure probability
from 10% to 90%). To analyze the results, we consider that the NEP establishes that 49 individuals in
the Health Group should receive commands for these levels. The group can use beepers, mobiles,
and landline phones. However, it does not clarify who can use beepers, and first responders can
only use mobile phones. We made a conservative assumption, and no one used a beeper.
We see that around eight individuals always receive command “Establish Emergency Level 0,”

regardless of the failure probability. By analyzing the simulation log files, we found out that they
belong to Leadership. Although they always receive commands, even 10% of failure probability
prevents the message from being sent. We also see that for a 10% failure probability, the mean
and median are around 30 (and 49 individuals should receive the command). Both the mean and
median decrease as failure probability increases. When failure probability is over 50%, the results
are uniform, and both the mean and median are fewer than 10 individuals.
We can see that when failure probability is over 30%, nobody receives the other commands. As

individuals send the messages in FIFO order, and they are not limited to a number of attempts
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to transmit the command, the information transmission process blocks if a device with only one
communication mechanism fails.
This study indicates that the mobile phone communication mechanism is critical, and we can-

not afford a failure rate of even 10% in the Health group because, in that case, more than 75% of
individuals do not receive the command. We can also conclude that the behavior we studied for
individuals is not efficient because the information transmission process is easily blocked.
This study shows the importance of reviewing the communications defined in the NEP in the

Health Group.We also found that the number of attempts to send a command before assuming lost
communication is critical. Future analyses need to consider how this attribute affects the diffusion
process. One advantage of ADPM is that we can extend the model by incrementally adding new
features. In this case, we would need to update the XML files where the behavior of agents is
defined and by only updating one DAM component: Behavior Rules (Figure 10).
b) Expert Validation
Although we usually conduct operational validation and compare the results with real data,

this was not feasible in this case study because there are no real-world data available about
what happens when a nuclear emergency occurs. In this case, we used expert validation. We pre-
sented the results to the experts in the emergency plan and we conducted interviews to validate
them.
Figure 15 shows howmany times each device was used based on the failure probability of mobile

phones (i.e., from 10% to 90% failure probability). These results can be used to identify the most
critical communication mechanisms, and to discuss the validity of the results with field experts.
Figure 15 (in_person) shows that the median for in situ communications is equal for all the failure
probabilities. However, when the failure probability of cell phones is low (10% and 20%), variabil-
ity is wider. Only in these cases (i.e., when the communication process is not blocked) are other
commands (i.e., “Establish emergency level 1, 2, 3”) transmitted. Figure 15 (ladlinephone) shows
an increasing trend in the mean and median in using landline phones and Figure 15 (mobilephone)
depicts a decreasing trend for mobiles. When the mobile phone fails, the individuals with access to
a landline phone stop using mobiles. Moreover, since there are individuals who only have access
to mobiles, the probability to establish communication is lower. As individuals do not know why
there is no response, they keep trying to communicate.
In Figure 15 (beeper), we see that beeper is not used (themean,median, and quartiles are all zero).

We obtained the same results for fax, e-mail, private landline phone, REMAR, REMER, satellite
phone, and TrankiE. As we assumed that anybody in the Health group has access to a beeper and
the specification document (detailed in Section 4.1), this means that the other devices are not used
by theHealth group, sowe can conclude that the previous results are correct. In Figure 15 (radiolog-
ical_group_device) and (tranki_gc), we can see that data distribution is uniform for TrankiGC and
RGD when we simulate failures in mobiles. The number of attempts to establish communication
leads to variability. These results validate the model based on NEP specifications, which states that
the Health group does not use these two devices. These restrictions justify the plots in Figure 15
(beeper), (radiological_group_device), and (tranki_gc), which are uniform for the different failure
probabilities.
We can also use other scenarios for expert validation; for example, Figures 16 and 17 show the

results in the Health Group when the NEP Director sets Emergency Level 0 and 1 and the fax and
the satellite phone fail with different failure probabilities (i.e., from 10% to 90% failure probability).
As these communications mechanisms are not used in the Health Group, we expect 49 individu-

als to receive commands. In the figures, we can see that the commands are transmitted as expected
according to the NEP specifications. These scenarios were anticipated by the field experts.

ACM Transactions on Modeling and Computer Simulation, Vol. 31, No. 1, Article 6. Publication date: December 2020.



Discrete-Event Modeling and Simulation of Diffusion Processes in Multiplex Networks 6:23

Fig. 15. Number of activations of different devices when cell phones fail with different probabilities.

Fig. 16. Individuals that receive the “Establish Level 0 and 1” within the Health Group, fax failures.

5 BENEFITS OF ADPM

As discussed earlier, the aim of this research is to define (1) an Architecture to study Diffusion
Processes in Multiplex dynamic networks and (2) a systematic Process to define, implement, and
simulate diffusion processes over such networks. To do so, we provide a method to simulate dif-
fusion processes over networks by systematically maintaining separations of concerns. The main
advantages of ADPM and the presented process are:

ACM Transactions on Modeling and Computer Simulation, Vol. 31, No. 1, Article 6. Publication date: December 2020.



6:24 C. Ruiz-Martin et al.

Fig. 17. Individuals who receive “Establish Level 0 and 1” in the Health Group, satellite failures.

• Reusability
• Complex agents with varied behaviors
• Configurability and ease to run experiments
• Captures the change over time of network characteristics

In this section, we discuss these advantages using the results of the case study and other specific
examples.

5.1 Reusability

ADPM provides separation of concerns. The modeling, implementation, and experimentation
phases of diffusion processes in multiplex networks are separated. As seen in Section 4, we first
define a formal model that can be analyzed prior to any software implementation and fix any
modeling issues found. Then we provide an executable model on a specific simulator (which can
be independent of the model specification). This simulated model can be experimented in differ-
ent scenarios, as shown in Section 4.6. Experiments are independent of the model definition and
execution, and the entire process is automated.
This separation of concerns helps with early validation. The formal model can provide valuable

information on early validation prior to implementation. We do not need the model implemen-
tation to start validation. As we exemplify in Section 3.4, with the model defined in Appendix A
(Generator Filter), we can study if we defined the correct behavior for the state variable mdb, which
accumulates the messages that have passed the filter. We can do these early checks for every single
model that we define.
We can also reuse the models defined. Once a DEVS model is defined, it can be stored in a model

library and be reused to study similar problems. More specifically, we could reuse the models of
different devices and communication networks to study how rumors are spread in a community.
We would need to redefine the behavior of the individuals (i.e., nodes), but we could reuse the
models of the devices. We reused these models in the context of a new project focused on the
resiliency of communications with a drone-based IoT platform [40]. The reusability concept is
applicable both at the model definition level (as the same model can be implemented on different
platforms) and at the implementation level.

5.2 Complex Agents with Varied Behaviors

In ADPM, there is no restriction to the complexity of the behavior of the agents. As such behavior
is defined using ABM techniques and, in our case, implemented with an XML file, any behavior can
be modeled in the Agent component of ADPM. The behavior of agents presented in the case study
in Section 4 offers an example in which for every single message that agents receive, their response
differs. Additionally, agents can have different behaviors. In the case study presented in Section 4,
each agent responds in a unique way to every single message. For our case study, all the agents
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are defined with the same set of parameters, but different agents can be defined with different sets
of parameters. We will merely need to consider this when formally defining the behavior rules
component of the node, as explained in Section 3. In that case, we have as many parameterized
behavior rule models as agent “types.”

5.3 Configurability and Ease to Run Experiments

ADPM allows us to simulate diffusion processes where the behavior changes without modifying
the model definition and implementation. If an agent’s behavior changes but the parameters that
define this behavior are the same, we update the corresponding value in the XML Agent. For
example, the definition of an agent’s behavior can include, as a parameter, “devices to be used.” In
a specific scenario, the agent can use a phone and a radio, or only the Internet and a phone in a
different scenario. The value of the parameter changes, but the parameter in the specification is the
same. These values can be updated in the XML Agent and the model is regenerated automatically.
The model now differs, but no modifications to the formal definition or the actual implementation
are necessary (i.e., the high-level metamodel remains unchanged but is instantiated differently).
This is also useful if we want to modify the number of agents in the scenario as we did in our case
study. We analyzed the Radiological and the Health groups without making any modifications in
the formal model definition or implementation: simply updating the behavior of the agents in the
XML Agent file suffices.
It is also easy to update the models’ parameters. Different scenarios and network configurations

can be run by simply updating the model parameters. As mentioned above, by changing the re-
lations in the ABM (i.e., XML in our case), we can study different scenarios for different network
configurations. We can also easily include and remove agents (i.e., nodes) by adding or deleting
XML files from the agent-based model.

5.4 Captures Changes in Network Characteristics Over Time

The topology and characteristics of the network can change over time in a specific scenario. ADPM
uses four models to update the properties/parameters of the DAM components during a simulation
run. As we showed in our case study, this allows us to modify the state of the devices at runtime.
We can also update the state of the networks. In this way, we can simulate a network collapse and
recovery without storing all the network configurations.

5.5 Limitations

A limitation of the present version of our approach is that the modeler needs to know the formal
modeling methodology followed (DEVS in our example). Another limitation is that if new param-
eters are added to the ABM, the definition of the atomic DAM components should be updated
accordingly. However, thanks to the modular design of DAM, we only need to modify the affected
components. The same occurs with any new additional components (i.e., Link Types) that need to
be added.

6 CONCLUSIONS

We propose ADPM, an architecture and development process based on a formal M&S methodol-
ogy to simulate diffusion processes in multiplex networks. We used Network Theory to define a
Network model, and Agent-Based Modeling to define an Agent model. Both models were utilized
to develop the Diffusion Abstract model. ADPM provides several advantages:

• Different scenarios and network configurations can be run by simply updating the model
parameters. There is no need to make changes in the model design.
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• There is no restriction to the complexity of the behavior of the agent. Any behavior can be
modeled in the Agent component of ADPM.

• Different agents can have quite different behavior.
• We improve reusability (as the behavior of the agents and objects are separate, we can reuse
these models to study other problems).

• Using four models to update the properties of the components allows us to simulate diffu-
sion processes in which the topology or characteristics of the network change over time.
We can update the network topology and the behavior of both the nodes and the links at
runtime. Moreover, we do not need to store the whole model again with the new properties.

We showed how to apply ADPM to build and simulate an information diffusion process in a
multiplex network, specifically an emergency plan in Spain. ADPM follows a formal model devel-
opment approach and implementation for diffusion processes in multiplex networks, which is a
novel approach. It also improves the model definition. Using an independent simulation engine
simplifies the verification process and experimentation. As the model definition and implementa-
tion are separate, we can start validating the model as soon as it is formally defined.
Future research includes automating the analysis and visualization of the simulation results,

allowing data to be shared with decision makers by easily improving the communication with
stakeholders.

APPENDICES

A DIFFUSION ABSTRACT MODEL: FORMAL DEFINITION USING DEVS

The Diffusion Abstract Model (DAM), presented in Figure 3, is formally defined using DEVS as
follows:

DAM = 〈X ,Y ,D, {Md |d ∈ D} , EIC,EOC, IC〉
where

X = ∅; Y = ∅

D =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

Node1, Node2 , . . . ,Noden ,
IndirectLink1, IndirectLink2 , . . . , IndirectLinkn ,

DirectLink, LinkConnectors, Di f f usionElementGenerator ,
NodeUpdater , IndirectLinkUpdater ,DirectLinkUpdater ,

LinkConnectorsUpdater

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪
⎭

M =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪
⎩

MNode1,MNode2, . . . ,MNoden

MIndir ectLink1,MIndir ectLink2, . . . ,MIndir ectLinkn

MDirectLink ,MLinkConnectors ,MDif f usionElementGenerator

MNodeUpdater ,MIndir ectLinkUpdater ,MDirectLinkUpdater ,
MLinkConnectorsU pdater

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪
⎭

EIC = ∅; EOC = ∅
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IC=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

((Di f f usionElementGenerator ,Out ), (Node1, InitialDi f f usionElementIn ))
. . .

((Di f f usionElementGenerator ,Out ), (Noden, InitialDi f f usionElementIn ))
((NodeUpdater ,Out ), (Node1, PropertyUpdateIn )),

. . .
((NodeUpdater ,Out ), (Noden, PropertyUpdateIn )),

((IndirectLinkUpdater ,Out ), (IndirectLink1, PropertyUpdateIn ))
. . .

((IndirectLinkUpdater ,Out ), (IndirectLinkn, PropertyUpdateIn ))
((DirectLinkUpdater ,Out ), (DirectLink, PropertyUpdate ))

((LinkConnectorsUpdater ,Out ), (LinkConnectors, PropertyUpdate ))
((Node1, PropertyUpdateOut ), (NodeUpdater , In))

. . .
((Noden , PropertyUpdateOut ), (NodeUpdater , In))

((Node1,Di f f usionElementDirectOut ), (DirectLink,Di f f usionElementIn ))
. . .

((Noden ,Di f f usionElementDirectOut ), (DirectLink,Di f f usionElementIn ))
((Node1,Di f f usionElementIndirectOut ), (IndirectLink1,NodeDi f f usionElementIn ))

. . .
((Noden ,Di f f usionElementIndirectOut ), (IndirectLinkn ,NodeDi f f usionElementIn ))

((DirectLink,Di f f usionElementOut ), (Node1,Di f f usionElementDirectIn ))
. . .

((DirectLink,Di f f usionElementOut ), (Noden ,Di f f usionElementDirectIn ))
((IndirectLink1,NodeDi f f usionElementOut ), (Node1,Di f f usionElementIndirectIn ))

. . .
((IndirectLinkn ,NodeDi f f usionElementOut ), (Noden ,Di f f usionElementIndirectIn ))

((IndirectLink1,ConnectorDi f f usionElementOut ), (LinkConnectors,Di f f usionElementIn ))
. . .

((IndirectLinkn ,ConnectorDi f f usionElementOut ), (LinkConnectors,Di f f usionElementIn ))
((LinkConnectors,Di f f usionElementOut ), (IndirectLink1,ConnectorDi f f usionElementIn ))

. . .
((LinkConnectors,Di f f usionElementOut ), (IndirectLinkn ,ConnectorDi f f usionElementIn ))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎭

n = #nodes in the Network Model

The rest of the coupled models inside the DAM are defined similarly to the above model.

B GENERATOR FILTER: FORMAL DEFINITION USING DEVS

The formal definition of the Generator Filter atomic model is as follows:

GeneratorFilter (Id ) = 〈Xb ,Yb , S, ta,δext , δint , δcon , λ〉

Xb = {(“In”, db )} Yb = {(“Out” ,db )} S = {mdb }

ta(S ) =

{
mdb = {} → ∞
mdb � {} → 0

}
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δext (S, e,X ) = δcon (S, e,X ) =
⎧⎪⎪⎨
⎪⎪
⎩

∀ d in Xb

i f d0 = Id
then mdb+ = d

⎫⎪⎪⎬
⎪⎪
⎭

δint (S ) = {mdb = {}} λ(S ) = {mdb }
Here “In” and “Out” are the names of the input and output ports, respectively; db = mdb =

{d ∈ N4} are bags of natural numbers; d0 represents the receiver of the message; d1 represents the
sender of the message; d2 represents the transmitted information; and d3 represents the network
layer used to transmit the message.

C GENERATOR FILTER: IMPLEMENTATION IN CADMIUM

struct generatorFilter_defs{ //Declaration of the ports in the atomic
struct out: public out_port<DiffusionElement> {};

struct in: public in_port< DiffusionElement > {};

};

template<typename TIME> //Atomic model definition
class generatorFilter {

using defs= generatorFilter_defs;

public:

using input_ports=tuple<typename defs::in>; //Input ports definition
using output_ports=tuple<typename defs::out>; //Output ports
definition
string id; //Model parameter
struct state_type{ //Model state declaration
vector<DiffusionElement> messagesPassingFilter;};

state_type state; //Model state definition
generatorFilter (string Id) noexcept { //Constructor & state
initialization
id=Id;

state. messagesPassingFilter.clear();

}

void internal_transition() {//Internal transition
state.messagesPassingFilter.clear();}

void external_transition(TIME e,typename make_message_bags

<input_ports>::type mbs){

for (const auto &x: get_messages<typename defs::in>(mbs))
{6 //Atomic model definition

if(x.destinatary == id) state.messagesPassingFilter.

emplace_back(x);

}

}

void confluence_transition(TIME e,typename make_message_bags

<input_ports>::type mbs){

internal_transition();

external_transition(TIME(), move(mbs));

} //Confluence transition
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typename make_message_bags<output_ports>::type output() const

{//Output function
typename make_message_bags<output_ports>::type bags;

for (int i = 0; i < (state. messagesPassingFilter.size()); i++){

get_messages<typename defs::out>(bags).push_back(state.
messagesPassingFilter[i]);}

return bags;

}

TIME time_advance() const {//Time advance function
return (state.messagesPassingFilter.empty() ? numeric_limits<TIME>::
infinity(): TIME("00:00:00:001"));}

}

The Generator Filter model filters the messages in the in port based on the model Id. When the
messages pass the filter criteria, they are sent through the out port. We start by defining the input
and output ports in the model. Then we implement the DEVS functions: internal transition, exter-
nal transition, confluence, output, and time advance. To do so, we define the DEVS function for
the filter. The internal transition function clearsmsgPassingFilter. The external transition function
stores the messages received through the input port in the msgPassingFilter variable if the field
“to” of the message matches the model’s Id. The output function sends the messages stored in the
msgPassingFilter variable through the output port. Finally, the time advance function passivates
the model if there is nothing to send and sets a time advance of 1ms if there is something to send.

D DIFFUSION ABSTRACT COUPLED MODEL: IMPLEMENTATION IN CADMIUM

To implement the DAM, we translate all the components in the formal definition (Appendix A)
to Cadmium syntax. First, we define the model’s input and output ports of the model as a tuple.
For the DAM, they are an empty tuple. Second, we define the subcomponents of the models using
the keywordmodels_tuple, which includes the name of all the DAM components (both atomic and
coupled) defined inM. Third, we define the external input and output couplings (EICs and EOCs) as
tuples. In the DAM, they are empty. Then we define the internal couplings (ICs). The IC is a tuple
that includes the IC specified in the formal definition. Finally, we define the DAM as a coupled
model. The coupled model is defined as a tuple (i.e., coupled model) that contains all the elements
previously implemented and a TIME-type parameter.

using iports_DAM = tuple<>; //Input ports

using oports_DAM = tuple<>; //Output ports

using submodels_DAM = models_tuple< //Components

Node1, Node2, ..., Noden,

IndirectLink1, IndirectLink2, ..., IndirectLinkn,

DirectLink, LinkConnectors, DiffusionElementGenerator,

NodeUpdater, IndirectLinkUpdater, DirectLinkUpdater,

LinkConnectorsUpdater >;
using eics_DAM = tuple< >; //External Input Couplings

using eocs_DAM = tuple< >; //External Output Couplings

using ics_DAM = tuple< //Internal Couplings

IC<DiffusionElementGenerator, DiffusionElementGenerator::Out, Node1,

Node1::InitialDiffusionElementIn>, ...,
IC<NodeUpdater, NodeUpdater::Out, Node1, Node1::PropertyUpdateIn>, ...,
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IC<IndirectLinkUpdater, IndirectLinkUpdater::Out, IndirectLink1,

IndirectLink1::PropertyUpdateIn>, ...,
IC<DirectLinkUpdater,DirectLinkUpdater::Out, DirectLink,

DirectLink::PropertyUpdateIn>, ...,
IC<LinkConnectorsUpdater, LinkConnectorsUpdater::Out, LinkConnectors,

LinkConnectors::PropertyUpdateIn>, ...,
IC<Node1, Node1::PropertyUpdateOut, NodeUpdater, NodeUpdater::In>,
...,

IC<Node1, Node1:: DiffusionElementDirectOut, DirectLink,

DirectLink::DiffusionElementIn>, ...,
IC<Node1, Node1:: DiffusionElementIndirectOut, IndirectLink1,

IndirectLink1::DiffusionElementIn>, ...,
IC<DirectLink, DirectLink::DiffusionElementOut, Node1, Node1::

DiffusionElementDirectIn>, ...,
IC<IndirectLink1, IndirectLink1::DiffusionElementOut, Node1,

Node1::DiffusionElementIndirectIn, >, ...,
IC<IndirectLink1, IndirectLink1::ConnectorDiffusionElementOut,

LinkConnectors,

LinkConnectors::DiffusionElementIn>, ...,
IC<LinkConnectors, LinkConnectors::DiffusionElementOut, IndirectLink1,

IndirectLink1::ConnectorDiffusionElementIn>, ...>;
template<typename TIME> //Coupled model

struct DAM: public coupled_model<
TIME, iports_DAM, oports_DAM, submodels_DAM, eics_DAM, eocs_DAM,

ics_DAM>{};
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